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Abstract

We consider the problem of jointly optimizing the daily production planning and energy supply man-
agement of an industrial complex, with manufacturing processes, renewable energies and energy storage
systems. It is naturally formulated as a mixed-integer multistage stochastic problem. This problem is
challenging for three main reasons: there is a large number of time steps (typically 24), renewable en-
ergies are uncertain and uncontrollable, and we need binary variables modeling hard constraints. We
discuss various solution strategies, in particular Model Predictive Control, Dynamic Programming, and
heuristics based on the Stochastic Dual Dynamic Programming algorithm. We compare these strategies
on two variants of the problem: with or without day-ahead energy purchases.

1 Introduction1

The latest Intergovernmental Panel on Climate Change (IPCC) warns us yet again about the consequences of2

climate change and incites governments, industries and citizens to change accordingly. The COP27, held in3

November 2022, set up a clear objective of securing global net-zero emissions by mid-century. Therefore, the4

industry, counting for one-fourth of global emissions (6th IPCC report), must take strong actions to reduce5

them. In this respect, the Clean Energy Ministerial Industrial Deep Decarbonisation Initiative (IDDI) calls6

for a change in the energy supply, as industries consume fuel massively to produce local energy, especially7

steel and cement production. To put things in perspective, renewable generation represented only 16.9%8

of electricity generation in the industrial sector in 2020, which is far less than its share in global electricity9

generation, up to 28% in 2020, according to the International Energy Agency (IEA), see their Tracking10

Industry 2021 report [Intc] and their Global Energy Review 2021 report [Inta]. For instance, microgrids11

are an alternative energy supply model. They are defined (see e.g., [HPG18]) as a small-scale power grid12

that can operate independently or collaboratively with the power grid. Generally, they are made of Energy13

Storage Systems (ESS), renewable energy generation units (wind turbines, solar panels) and consumption14

units (factories, buildings, etc.). With recent technological advances, such energy systems are becoming15

more efficient and cheaper to install and operate. Moreover, some governments subsidize energy transition16

efforts, which encourages factories to invest in onsite renewable energy. For instance, The Fairfield, California17
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brewery1 has invested in a solar array and wind turbine which provide an average of 30% of its electricity18

needs. Another example is the French company E.Leclerc which equips some of its hypermarkets with solar19

generation.20

In a recent review of energy sustainability in manufacturing systems [RM21], the authors point out that, in21

most papers, the problem of energy management is decoupled from manufacturing operations. However, they22

argue that this decoupling is not realistic as the two problems are interdependent, and suggest that research23

should be conducted on solving those problems jointly. In this paper, we address this issue by proposing a24

joint production and energy supply planning problem.25

Unfortunately, incorporating renewable energies in the supply mix is challenging as they are intermittent,26

unpredictable and uncontrollable. To counteract these defects it is often suggested to add an ESS (we refer to27

[Geo+21] for an overview of the available ESS). Doing so allows transferring energy across time steps, making28

it controllable and compensating for intermittency. Unpredictability of the renewable production requires29

going from a deterministic formulation to a stochastic formulation. Indeed, a classical deterministic problem is30

often misleading and optimistic about the potential of the ESS. Unfortunately, multistage stochastic problems31

are known to be numerically challenging (see e.g., [Sha06]). Starting from a standard scheduling industrial32

problem, we consider relying on an onsite microgrid to provide an alternative energy supply to the main grid.33

We obtain a mixed-integer multistage stochastic problem optimizing jointly the production planning and the34

energy supply management of an industrial facility with in advance and intraday energy purchases.35

1.1 The industrial microgrid management problem36

Building renewable energy production and storage management systems to supply an industrial facility is37

a complex task. One of the questions at hand is the financial rentability of such a system, which is not38

guaranteed. To incite the industry to invest in renewable energies, we need economic guarantees: see [Intb]39

and [Intd] for an overview of clean energy transition costs in 2021. The economic viability of a microgrid is40

based on controlling the investment costs and managing the microgrid efficiently. In this paper, we do not41

discuss the investment part but focus on the operational part.42

We consider a facility with I machines that produce up to J types of products that can be stored (see fig. 1a).43

Our goal is to provide the facility with a joint production and energy supply planning, on a discrete horizon44

t ∈ [T ]. The planning should minimize the total expected cost (economic, environmental and labor) while45

satisfying production targets and technical constraints.46

Depending on the facility at hand, many technical constraints need to be satisfied. We can classify them into47

three types. First, physical constraints are induced by the machines at hand. For example, most machines,48

such as grinders or plastic extruders, require warming up before being operational. Another straightforward49

example comes from the food industry, where machines need to be cleaned up to reconfigure the production50

line. Second, process constraints which correspond to precedence constraints mandating sequential execution51

of some tasks (usually called flow-shop problems). For instance, in a chocolate factory, every batch production52

will follow in order: cleaning, roasting, shell removing, grinding and conching. Finally, implied constraints53

model decision-maker preferences or human resources constraints. For example, the decision maker may limit54

the number of re-starts to limit wear-off, if a machine is hard to access or for human power reasons.55

Most of the above constraints are modeled with binary variables. Thus, even though we focus here on a56

specific problem, the developed approach can be transposed to a large variety of problems. In this paper,57

1https://www.anheuser-busch.com/breweries/fairfield-ca
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Figure 1: Industrial Management Problem

we consider a problem with bounded production and set-up costs. In addition, we consider shared resource58

constraints such that some products cannot be produced simultaneously. Factory energy needs, proportional59

to production, are met with electricity from a main grid or produced onsite by a micro-grid consisting of60

solar panels coupled with an energy system storage (ESS) see fig. 1b.61

Electricity from the main grid can be purchased through two different contracts, usually cumulated: Intra-62

day contract where prices are fixed annually, the factory pays the energy extracted from the main grid at63

a given time t; In-advance contract where the factory buys energy blocks in advance (e.g., a day ahead of64

production) at a preferential rate. Decisions are made adjusting energy purchases based on intra-day rates65

in real-time.66

1.2 Literature review67

We consider a problem coupling production planning and energy supply management. Taken separately,68

each problem has been widely studied, but considering them simultaneously is less common, especially when69

taking into account uncertainty, leading to large multistage stochastic optimization problem. In this section,70

we review the state-of-the-art of energy-aware production planning under uncertainties.71

A typical angle for energy-aware production systems is to minimize energy waste, see the reviews [Bän+21],72

[BG16] and references therein. This part of the literature looks for production plans, or scheduling, that are73

more energy efficient, adapting tools from well-studied problems like single or parallel machine scheduling,74

job-shop, flow-shop or lot-sizing 2. However, few papers discuss the economic impact of integrating renewable75

energy sources on site: indeed, the industrial energy supply is traditionally guaranteed by an external grid.76

In their survey [Bän+21], Bänsch et al. count 8 articles (out of 192) that consider an onsite energy generation77

and an ESS. The literature lacks research on industrial problems with distributed generation systems, though,78

they are widely studied on their own. We refer to the review [Alo+22] where Alonso-Travesset et al. focuses on79

recent studies on models under uncertainties in distributed generation systems. They highlight the necessity80

of properly taking into account uncertainties in those problems, in particular regarding renewable energy81

generation. In the problem considered here, the main source of uncertainty comes from renewable energies.82

There are two main ways of handling uncertainty: stochastic optimization and robust optimization.83

2The job-shop problem, see e.g., [Man60], looks for an optimal scheduling plan for n jobs, consisting of operations with
precedence constraints, on m machines. The flow-shop problem is a variant of the job-shop problem with a strict order of all
operations on all jobs. Finally, a lot-sizing problem optimizes the production quantities of each item at each time step.
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1.2.1 Stochastic optimization for operational management84

In the first paradigm, we model uncertain variables as random variables with known distribution, usually85

represented by a scenario tree. Further, as uncertainties are revealed step by step, stochastic problems are86

often multistage problems that are known to be challenging, while there exist various methods to tackle87

2−stage problems e.g., based on Bender’s decomposition (see [BL97]). As a result, multistage problems are88

classically relaxed into 2−stage problems: all decision variables, except the first stage variable, are assumed89

to be taken with the full knowledge of the uncertainty. This is the strategy adopted by Golari, Fan, and Jin90

in [GFJ16] to optimize the production planning of interconnected factories each connected to a micro-grid.91

Biel et al. take this approach as well in [Bie+18] to solve a flow-shop problem under uncertainties regarding92

wind energy generation. In another article ([WMG20]), Wang, Mason, and Gangammanavar studies a similar93

problem with multi-objectives (total completion time and energy costs), where selling an energy excess to94

the main grid is allowed. They propose an ε-constraint algorithm integrated with the L-shaped method95

([Bir85]), which is a Benders decomposition adapted to 2−stage stochastic programs. To avoid 2−stage96

approximations, one can turn to dynamic programming reformulations of the multi-stage stochastic problem.97

However, vanilla dynamic programming for multistage problems is limited by what is known as the curse98

of dimensionality. In 1991, Pereira and Pinto proposed an efficient algorithm to solve those problems: the99

Stochastic Dual Dynamic Programming (SDDP) algorithm [PP91]. Since then, SDDP has been widely100

applied to energy management problems and variants have been derived (see [FR21] for a recent survey). We101

recall the algorithm and present related literature in section 3.2.102

1.2.2 Robust optimization for operational management103

In the second paradigm, robust optimization, we consider the worst case in possible uncertainty realizations.104

This is the choice made by Ruiz Duarte, Fan, and Jin in [RFJ20], where they evaluate the renewable energy105

integration with an ESS in a factory while optimizing the production planning. This is modeled by a 2−stage106

problem: in the first stage, a production plan is defined whereas in the second stage, the decisions regarding107

the energy management system are made to minimize its energy costs under the worst-case energy generation108

scenario. The robust uncertainty set is determined by statistical tools. Bridging both worlds, Shahandeh,109

Motamed Nasab, and Li propose in [SML19] to divide random variables into two categories: static and110

dynamic variables. The idea is to apply robust optimization on one variable category and then stochastic111

optimization on the other, considering a scenario tree. This results in two hybrid algorithms, mixing robust112

and stochastic optimization to solve a multistage problem with different uncertainty types.113

1.2.3 Price and demand uncertainties114

Furthermore, in these industrial problems, the solution is not only affected by renewable energies’ variabil-115

ity: costs and demands are other known uncertainty sources. If some articles consider time-of-use (TOU)116

electricity rates ([Bie+18], [MP13], [Li+17] and [WMG20]), which are fixed prices in contract depending117

on consumption’s times, others consider variable prices. In that respect, Bohlayer et al. ([Boh+20]) and118

Ierapetritou et al. ([Ier+02]) both study mixed-integer multistage stochastic problems under energy prices119

uncertainty. See also Fazli Khalaf and Wang ([FW18]) who solve a 2−stage stochastic scheduling problem120

considering both electricity prices and energy generation as random variables. Finally, in lot-sizing problems,121

the product demand is often random: Higle and Kempf consider a multistage stochastic program in [HK10]122

to solve a production planning problem under demand uncertainty, trying to avoid cumulating stocks.123
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1.2.4 Strategic decisions124

We have covered stochastic considerations for operational or tactical production planning problems. We now125

discuss strategic decisions like investing in renewable energies and ESS, with questions of size, technologies126

and number of ESS and energy generation units. To adapt their energy mix, factories need to design127

what distributed generation system is suited for their production. In [FMH21], Fattahi, Mosadegh, and128

Hasani focus on the planning in mining supply chains with renewable energy investment where at each stage,129

warehouse or generation systems can be installed. Though economic rentability is crucial, the growing130

interest in microgrids is driven by environmental concerns. Thus, instead of minimizing energy waste, a more131

direct approach consists in integrating environmental objectives into costs. For example Li et al., in [Li+17],132

assess wind and solar generation deployment costs in order to achieve net-zero carbon. On another note,133

microgrids bring flexibility and energy independence. In [Pha+19], Pham et al. extend Golari, Fan, and134

Jin’s work by considering both stochastic demand and microgrid sizing. Their goal is to determine if it is135

economically viable to provide the system with only renewable energies.136

Investing in microgrids doesn’t require only sizing but also investigating the different existing technologies137

and their characteristics. In [Tsi+21], Tsianikas et al. study the capacity extension problem as well as the138

different storage technologies. An interesting take on the subject is given in [HBF15]: when most micro-139

grid investment models consider the ESS sizing at the beginning, Hajipour, Bozorg, and Fotuhi-Firuzabad140

proposes to extend the storage capacity and invest in renewable generation units at different times, leading to141

a multistage stochastic problem. This model allows life-cycle constraints or decreasing technology efficiency142

to have an impact on results.143

1.3 Contributions144

Our contribution in this paper lies in four aspects. First, we propose an optimization model for a coupled145

management problem with both production and energy supply planning. We take into account the multistage146

structure of the problem, the uncertainties due to onsite renewable energy generation and binary variables147

modeling physical production constraints. In particular, we model shared resource constraints: a choice has148

to be made between different products at each time. Therefore, it is crucial, when reducing the problem to149

stage t with dynamic programming, to have visibility on the consequences of choosing a product at t. Second,150

we consider both on-demand supply with TOU pricing and in-advance energy purchasing. The latest brings151

complexity to the multistage problem with first-stage variables impacting the whole horizon costs. Third, we152

discuss multiple solution strategies based on well-known and new methodologies: a deterministic approach153

known as Model Predictive Control (MPC); Stochastic Dynamic Programming (SDP); and an approach154

solving linear multistage stochastic problems, Stochastic Dual Dynamic Programming (SDDP). Finally, as155

there does not exist an efficient algorithm to solve large mixed-integer multistage stochastic problems, we156

propose heuristic methods relying on the approximated cost-to-go function given by SDDP. We highlight the157

theoretical and practical limits of these solution strategies on numerical examples.158

The remainder of the paper is laid out as follows. Section 2 introduces the problem formulation. We present159

in section 3 dynamic programming methods to solve multistage mixed-integer stochastic problems. Those160

methods being unsatisfactory for the problem at hand, we then proceed to detail different heuristics in161

section 4. Finally, section 5 presents numerical results.162
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1.4 Notations163

To facilitate understanding, we go through some notation used in this paper. We denote [a : b] := {a, . . . , b}164

the set of integers between a and b, and [T ] := [1 : T ] the set of non-null integers smaller than T . Accordingly,165

X[n] denote the collection X[n] := {Xi}i∈[n]. Generally speaking, we denote the state variables x, the control166

variables u and the noise ξ. All random variables are in bold characters, further if ξ is a random variable167

then ξ denotes a realization of this variable. Finally, σ(ξ[t]) represents the σ−algebra generated by {ξτ}τ∈[t].168

2 A multistage stochastic formulation for joint production and169

energy planning170

In this section, we present the mathematical formulation of our problem, presented in section 1.1. We first171

focus on the operational problem: daily operations the factory has to make. Note that, though we consider172

a specific production problem constructed from a practical industrial application, the proposed numerical173

approaches detailed in sections 3 and 4 can be adapted to other production problems.174

We consider a factory owning solar panels and a battery. Thus, the energy supply is a mix of solar energy175

available qPV
t (modeled as random variables), of charge ϕ+

t and discharge ϕ−
t from the battery, and of energy176

bought from the main grid qgrid
t . Energy can be either bought in advance (e.g., on a day-ahead market) or in177

real-time through industrial contracts with fixed prices. We decompose the energy bought from the grid qgrid
t178

into energy bought in advance vDA
t , considered for now as a given parameter, plus energy bought during the179

day vID
t . With these elements, we need to ensure that the energy supply exceeds the energy demand qload

t ,180

leading to the following control constraints.181

qPV
t + ϕ−

t − ϕ+
t + qgrid

t ≥ qload
t ∀t ∈ [T ], (1a)

0 ≤ ϕ+
t ≤ ϕ+

max ∀t ∈ [T ], (1b)

0 ≤ ϕ−
t ≤ ϕ−

max ∀t ∈ [T ], (1c)

qgrid
t = vDA

t + vID
t ∀t ∈ [T ], (1d)

vDA
t ,vID

t ≥ 0 ∀t ∈ [T ]. (1e)

The energy demand qload
t is shaped by the factory’s production, derived from the quantities (uij

t )t,i,j of182

product j produced on machine i at time t. We also introduce binary variables, (bijt )t,i,j , assigning product183

j to machine i at time t, leading to the following set of constraint.184

∑
j

bijt ≤ 1 ∀i, t, (1f)

max
i

bijt +max
i

bij
′

t ≤ 1 ∀t,∀(j, j′) ∈ I, (1g)

uimin
t bijt ≤ uij

t ≤ uimax
t bijt ∀i, j, t, (1h)

qload
t = g(uij

t , bijt ) ∀t, (1i)

bijt ∈ {0, 1} ∀i, j, t. (1j)
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185

At each time t, one machine can be assigned to one product at most (1f). I is the set of incompatible186

products, meaning a couple of products (j, j′) belongs to I if they share resources. Therefore, they cannot187

be produced simultaneously (1g). Furthermore, production is bounded by machine capacities (1h). Finally,188

the function g gives the energy load induced by energy production (1i), we assume g linear.189

Hence, the state of the system is described by the products and battery stocks. The stocks of products are190

modeled with state variables (sjt )t,j . The demand at time t is modeled as a deterministic vector (djt )j∈J .191

Initial stocks are empty. Then the stock variables follow dynamic equations and bounding constraints given192

by193

sjt = sjt−1 − djt +
∑
i

uij
t ∀t, j, (2a)

sjt ≥ 0 ∀t, j, (2b)

sj0 = 0. (2c)

Indeed, for each time t and product j, the factory has to satisfy a demand djt , which is ensured by the positivity194

of stocks requirement (see eq. (2b)). Further, the quantity of energy stored in the battery, (SOCt)t, is also195

modeled as a state variable:196

SOCt = SOCt−1 − 1

ρ
ϕ−

t + ρϕ+
t ∀t, (2d)

SOCmin ≤ SOCt ≤ SOCmax ∀t. (2e)

197

For notational conciseness, we reduce control variables to vector yt := (bt, ut, q
grid
t , ϕ+

t , ϕ−
t ) and state198

variables to vector xt := (st, SOCt). Finally, the objective is to minimize total energy purchases i.e., intra-199

day energy purchases vID.200

V (x0; v
DA) := min

y[T ],x[T ]

E
[ T∑
t=1

pIDt vID
t

]
(3a)

s.t. eqs. (1) and (2), (3b)

σ(yt) ⊂ σ(qPV
[t] ) ∀t ∈ [T ]. (3c)

201

The last constraint eq. (3c), commonly known as non-anticipativity constraint, represents the information202

available when taking decision yt at t. In particular, in this framework, we observe the random variable qPV
t203

realization, before making decisions yt, with no knowledge of future random realizations from t+ 1 to T .204

We now consider the strategic problem of choosing the best vDA that minimizes day-ahead costs plus oper-205

ational costs V (x0, v
DA). This can be done by introducing an initial time step t = 0 where such strategic206

variables are decided. This amounts to solving problem 4.207
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V (x0) := min
vDA
t ≥0

T∑
t=1

pDA
t vDA

t + V (x0; v
DA) (4)

In the next section, we present solution methods for this problem based on Dynamic Programming.208

3 Dynamic Programming approaches209

Assuming that the noises are finitely supported, a multistage stochastic problem like Problem 3 can always210

be cast as a large-scale deterministic problem (see e.g., [BL97]). However, the size of these deterministic211

equivalents is linear in the number of scenarios, which is often exponential in the horizon. A solution consists212

in compressing the information required to make a decision. To this end, we make a crucial stagewise213

independence assumption and turn to Dynamic Programming tools, presented here.214

3.1 Stochastic Dynamic Programming215

We consider a controlled dynamic system, that is a sequence of random vector x[T ] that follows a dynamic,216

affected by a sequence of noises ξ[T ]. Those random vectors describe the state of the system across time,217

here product stocks st and battery energy level SOCt. Each noise ξt takes value in a finite set Ξt, and we218

denote Ω :=
∏

t∈[T ] Ξt. We assume that these noises represent all the uncertainty in the problem at hand219

(here solar energy), with known probability distribution, resulting in a probability space (Ω,A,P). We call220

scenario a sequence ξ[T ] of realization of the noise at each time step.221

We consider the Problem 3, parametrized by vDA and restrained to sub-horizon [t : T ] from initial state xt−1,222

and we denote its expected optimal value Vt(xt−1; v
DA). Then, with the stage-wise independence assumption,223

the Dynamic Programming principle ensures that the value functions follow the following recursive equations:224

V̂t(x, ξ; v
DA) = min

yt∈Yt(x,ξ)
xt∈Xt(x,yt,ξ)

pIDt vID
t︸ ︷︷ ︸

instantaneous cost

+ Vt+1(xt; v
DA)︸ ︷︷ ︸

cost-to-go

(5a)

Vt(x; v
DA) = E

[
V̂t(x, q

PV
t ; vDA)

]
, (5b)

VT+1(x; v
DA) = 0. (5c)

225

For notational conciseness, we denote Yt(x, ξ, v
DA) the feasible control set representing constraints eq. (1)226

depending on current state x, noise realization ξ, and strategic variables vDA. Similarly, we denote Xt(x, u, ξ)227

the state set representing dynamics eq. (2) depending on previous state x, control u and noise ξ.228

However, for any x ∈ Xt−1, computing Vt(x; v
DA) requires full knowledge of Vt+1. With continuous state,

it is usually impossible. Therefore, to accommodate for inexact value functions, we introduce the bellman
operators which generalize eq. (5) so that the dynamic equations hold for any given function R approximating
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the cost-to-go Vt+1. The backward operator Bt, defined in eq. (6a),

Backward operators


B̂t(R) : x, ξ 7→ min

yt∈Yt(x,ξ)
xt∈Xt(x,yt,ξ)

pIDt vID
t +R(xt),

Bt(R) : x 7→ E
[
B̂t(R)(x, qPV

t )
]
,

(6a)

returns an approximation, at a given state x, of the cost-to-go Vt starting from time t, given an approximation229

R of the cost-to-go starting from time t + 1. Thus, given a discretization of each state space Xt, and230

an interpolation method we can, recursively, compute an approximation of every cost-to-go function see231

algorithm 1.232

Algorithm 1: Stochastic Dynamic Programming

1 Input : x0, discretization grids XD
t , interpolation operator.

2 Output : approximated value function Ṽt

3 ṼT+1 = 0.
4 for t : T → 1 do
5 for xD

t−1 ∈ XD
t−1 do

// We discretize Xt

6 for ξt ∈ Ξt do
7 Solve the one-stage deterministic optimization problem:

8 Ṽt(x
D
t−1, ξt; v

DA) = B̂t(Ṽt+1)(x
D
t−1, ξt; v

DA).

9 Ṽt(x
D
t−1; v

DA) =
∑

ξt∈Ξt

πξt Ṽt(x
D
t−1, ξt; v

DA) ; // expected value

10 Define Ṽt for any x ∈ Xt−1 by interpolation on
{
(xD

t−1, Ṽt(x
D
t−1; v

DA))
}
xD
t−1∈XD

t−1

.

233

We then define in eq. (6b) the forward operator, which returns the optimal next state xt, given a starting234

state x, a noise ξ and an approximation R of the cost-to-go from t + 1. Note that, in practice, computing235

B̂t(R)(x, ξ) or F̂t(R)(x, ξ) consists in solving the same deterministic problem. Nevertheless, if the backward236

operator is well-defined, the forward operator requires a choice if the optimal solution is not unique. To be237

completely rigorous, we should say that a forward operator defines a selection of the optimal solution set.238

F̂t(R) : x, ξ 7→ y⋆t , x
⋆
t ∈ argmin

yt∈Yt(x,ξ)
xt∈Xt(x,yt,ξ)

pIDt vID
t +R(xt) (6b)

Dynamic Programming is a powerful tool as the multistage problem considers (|Ξ|T ) scenarios and turns239

the exponential complexity in the horizon T into a linear one. However, it is limited by what is known as240

the curse of dimensionality. Indeed, we have to solve, for each time step, |Xt|.|Ξ| problem. A discretization241

of Xt usually requires a number of points exponential in the dimension of Xt. Thus, in practice, Dynamic242

Programming cannot be used for states with more than 5 dimensions.243
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Remark 1. In order to represent the strategic problem as a stochastic dynamic system, we need consider an244

extended state (xt, v
DA), where vDA is decided at t = 0 and then carried on, as part of the state, from stage245

to stage by the dynamics of the system. This extension increases the dimension of the system from J + 1 to246

J + 1 + T , making algorithm 1 computationally intractable as typical T is at least 24.247

When J ≤ 3 algorithm 1 can be reasonably used to address Problem 3. However, computation time is still248

high as we solve O(T.|XD
t |.|Ξ|) MILP. Thus, we present another algorithm, exploiting sampling methods, in249

the next section.250

3.2 Stochastic Dual Dynamic Programming (SDDP)251

To counteract the dynamic programming computational issues, a class of Trajectory Following Dynamic252

Programming (TFDP) algorithms (see [FL22] for recent overviews) has been developed. The crux of these253

algorithms is to iterate between forward phases that compute state trajectories, and backward phases that254

improve cost-to-go estimations. More specifically, in the forward phase of a TFDP algorithm, a state tra-255

jectory is computed using the current cost-to-go estimations. Then in a backward phase, the cost-to-go256

estimations are refined around the state trajectory computed in the forward phase. These approximations257

are given as the maximum of elementary functions called cuts.258

For linear multistage stochastic problems with stagewise independence, the SDDP algorithm [PP91] has259

proven to be an efficient tool, widely used in the energy community in particular for long-term hydro-260

management. It is the most well-known and studied example of TFDP algorithm, relying on Benders’ cut261

obtained through linear programming duality, assuming the problem is convex and continuous. In line with262

SDDP, the Stochastic Dual Dynamic Integer Programming (SDDiP), [ZAS19], assumes that all state variables263

are binary, that there exists some continuous recourse ensuring relatively complete recourse assumption,264

and derives specific linear cuts. As one can always represent bounded integer variables, and approximate265

continuous variables, through binaries, the algorithm is theoretically applicable for a large number of settings,266

including ours, but is limited in practice as each step requires solving a MILP, and as the convergence is267

generally slow.268

Another TFDP algorithm, the Mixed Integer Dynamic Approximation Scheme (MIDAS) (see [PWB20])269

assumes the monotonicity of the cost-to-go functions and uses piecewise constant cuts to approximate them.270

Finally, the Stochastic Lipschitz Dynamic Programming (see [ACF22] ), simply assumes Lipschitz regularity271

of the cost-to-go functions and uses reverse norm cuts. SDDiP, MIDAS and SLDP might be applicable272

to the industrial microgrid setting but are generally slow to converge without additional, problem-specific,273

cuts. However, the subject is an active field of research: variants and enhancements of those algorithms274

are frequently published (e.g., [FR22; QGK23]). Unfortunately, to the best of our knowledge, there is no275

off-the-shelf implementation of efficient TFDP algorithms for mixed-integer stochastic programs.276

Therefore, we consider the continuous relaxation of Problem 3, and adapt the tools in section 3.1 for277

the continuous relaxation, using exponent r to indicate the problem at hand is relaxed. It is the same278

problem as Problem (4) but we assume all binary variables are in [0, 1] instead of {0, 1}, represented by279

yr
t ∈ Yr

t (xt−1, q
PV
t ; vDA).280

281

Leveraging the convexity of the relaxed Problem 3, the SDDP algorithm 2, approximates each V r
t+1 as a max-282

imum of affine functions. More precisely, at iteration k, we first compute a trial trajectory (xk
t )t∈[T ]. Then, in283

the backward phase, we can compute Br
t (V

r,k
t+1) by solving |Ξt| linear problems. Linear programming duality284
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Algorithm 2: Stochastic Dual Dynamic Programming

// Initialization

1 k = 0, V r,0
t = LB, vDA.

2 for k : 0, . . . do
3 Simulate a scenario {ξkt }t∈[T ].

// Forward phase

4 xk
0 = x0.

5 for t : 1 → T do

6 ykt , x
k
t = F̂r

t (V
r,k
t )(xk

t−1, ξ
k
t ; v

DA).

// Backward phase

7 V r,k
T+1 = 0

8 for t : T → 1 do
// Cut computation

9 for ξ realization of ξt do

10 Solve B̂r
t (V

r,k
t+1)(x

k
t−1, ξ; v

DA) and obtain coefficients α̂k
t (ξ) and β̂k

t (ξ) such that:

α̂k
t (ξ)

Tx+ β̂k
t (ξ) ≤ B̂r

t (V
r,k
t+1)(x, ξ; v

DA) ∀x.

11 Define αk
t = E

[
α̂k
t (ξt)

]
and βk

t = E
[
β̂k
t (ξt)

]
.

12 Define V r,k
t : x 7→ max

κ≤k
(ακ

t
Tx+ βκ

t ).

yields a sub-gradient of Br
t (V

r,k+1
t+1 ) at xk+1

t−1 , which in turn defines an affine function which underestimates285

Br
t (V

r,k+1
t+1 ) ≤ Br

t (V
r
t+1) = V r

t . In particular, at iteration k, the approximate cost-to-go functions V r,k
t are286

given as a maximum of affine cuts, i.e., V r,k
t (x) = max

κ≤k
{ακ

t + βκ
t x}.287

Recall that, given any approximated cost-to-go function, the forward Bellman operator (see section 3.1),288

produces a state-based feedback, satisfying in particular the binary constraints. Thus, it seems natural to289

use the functions V r,K
t as approximated cost-to-go, leading to a strategy through the forward operators290

F̂t(V
r,K
t ). The main limit of this approach is that we are quite greedy in the way we repair the binary291

constraints. Indeed, V r,K
t does not account for binary constraints, and the forward operator only considers292

their impact on one time-step. In particular in the problem at hand (with shared resource constraints), SDDP293

approximated cost-to-go functions do not capture the necessity to make a choice between two products in294

the future. Therefore, a decision at t leading to infeasibility in the future, can have a finite SDDP estimated295

cost-to-go, and be selected by the forward operator. We illustrate the limit of this approach in the following296

toy example.297

Example 1 (Limit of continuous relaxation.). Consider a production unit that produces two products j =298

A,B, over T = 2 time steps and one machine. The shared resource constraint, modeled through binary299

variables bjt , implies that we must decide which product to produce at t = 1, and which at t = 2. We look300

for the production plan minimizing costs while satisfying a demand D = 1 in both products at the end of the301

horizon. The problem is formalized as follows.302
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min 3uA
1 + 2uB

1 + (uA
2 + uB

2 ) (7a)

s.t uj
1 + uj

2 ≥ D j = A,B, (7b)

0 ≤ uj
t ≤ 2bjt j = A,B t = 1, 2, (7c)

bAt + bBt ≤ 1 t = 1, 2, (7d)

bjt ∈ {0, 1}, uj
t ≥ 0 j = A,B t = 1, 2. (7e)

For the true problem, it is optimal to produce B in the first period and A in the second period, resulting in303

an optimal cost of 3. However, in the continuous relaxation of Problem (7), bjt ∈ [0, 1], and producing both304

products at the same time is allowed. For instance, producing both products at time t = 2 (with bA2 = bB2 = 0.5)305

is admissible for the relaxed problem, yielding an optimal cost of 2.306

Let V r
2 be the relaxed cost-to-go function given by:307

V r
2 (u

A
1 , u

B
1 ) = min

uA
2 ,uB

2 ,bA2 ,bB2

uA
2 + uB

2 (8a)

s.t uj
1 + uj

2 ≥ D j = A,B, (8b)

0 ≤ uj
2 ≤ 2bj2 j = A,B, (8c)

bA2 + bB2 ≤ 1, (8d)

bj2 ≥ 0, uj
2 ≥ 0 j = A,B. (8e)

Now, using the cost-to-go approximation V r
2 to determine optimal decisions of the mixed-integer problem at308

t = 1, we solve:309

min
uA
1 ,uB

1 ,bA1 ,bB1

3uA
1 + 2uB

1 + V r
2 (u

A
1 , u

B
1 ) (9a)

s.t bA1 + bB1 ≤ 1, (9b)

0 ≤ uj
1 ≤ 2bj1 j = A,B, (9c)

bj1 ∈ {0, 1} j = A,B. (9d)

Note that, when solving Problem9, we make decisions at t = 1 considering the cost impact at t = 2, but310

not knowing what decisions are attached to this cost. In dynamic programming, infeasibility is supposed to be311

propagated through costs: in this example, with the real cost-to-go function, V2(0, 0) = +∞ and the solution312

uA
1 = uB

1 = 0 would never be chosen. However, if we use the relaxed cost-to-go function, the infeasible solution313

uA
1 = uB

1 = 0 has a cost 0 + V r
2 (0, 0) = 2 and is chosen rather than the optimal solution uA

1 = 1;uB
1 = 0,314

whose cost is 2 + V r
2 (0, 1) = 3.315

We move on to present heuristics in section 4, and address this particular limit in section 4.4 through a316

look-ahead heuristic that consider more than one time-step.317
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4 Heuristics for multistage problems318

So far, we have presented a stochastic algorithm with unreasonable computational time and a stochastic319

algorithm solving a continuous relaxation of our problem. Those are exact methods, but will not allow320

us to solve the problem in a satisfactory manner. Could we come up with heuristics taking into account321

uncertainties, using SDDP, and solving mixed-integer problems such as ours? In this section, we present322

different heuristics, either relaxing information constraints i.e., deterministic, or relaxing integrity to a point.323

4.1 An Expected Value (EV) corrected heuristic324

One of the challenges is to take into account random variables. A common simplification consists in reducing325

the problem to its deterministic version, by replacing the random variable with our current best estimation.326

We are then in the anticipative framework which consists in assuming we can look into the future and know327

the noises realization i.e., relaxing constraint 3c. More precisely, solving the anticipative problem, given a328

scenario qPV
[T ] , returns a solution perfectly adapted to this scenario, of optimal value V ant(x0, q

PV
[T ] ). Then,329

the Expected Value solution amounts to solving the anticipative problem, given the expected scenario qPV
[T ] .330

However, we are not in a complete recourse setting, meaning that the deterministic production and energy plan331

computed is not necessarily admissible. Therefore, a first heuristic consists in computing the deterministic332

solution fixing part of control variables, and then, adjusting the rest of the variables to actual random variable333

realization. In our particular microgrid problem, we fix production variables and then adjust energy flows to334

actual solar energy produced. We opt for a simple strategy described in fig. 2.335

Actual solar energy
available qPV

t

Is there more en-
ergy than needed?

Charge as much
energy as possible

yes

Stick to the
deterministic
battery plan.

no

We fix qgridt

to match en-
ergy needed.

Figure 2: Corrected EV heuristic algorithmic scheme

This strategy has no flexibility, which is needed in a system subjected to uncertainties. It serves as a336

benchmark for stochastic solutions.337

4.2 Model Predictive Control338

To add flexibility to the previous approach, we present the Model Predictive Control (MPC) approach, as a339

first adaptive approach. To use MPC we need some forecast methodology, that takes available information340

to predict the values of the random variables
{
qPV
t

}
t∈[T ]

. The algorithm then consists in solving successive341

deterministic sub-problems (see algorithm 3). Step after step, it applies the decision of the first control342

obtained, reveals the realization of the next random variable, and recomputes all other decisions, updating343

forecasted values if possible.344

345
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Algorithm 3: Model Predictive Control

1 Input : x0, initial forecast {qPV
τ,0 }τ∈[T ].

vDA = argmin

T∑
t=1

pDA
t vDA

t + V ant(x0, q
PV
[T ],0; v

DA)

for t : 1 → T do
2 Update forecasted values {qPV

τ,0 }τ∈[T ].

y∗t , . . . , y
∗
T = argmin

T∑
τ=t

pIDt vIDt

s.t. yτ ∈ Yτ (xτ−1, q
PV
τ,0 ; v

DA) ∀τ ∈ [t : T ],

xτ ∈ Xτ (xτ−1, yτ , q
PV
τ,0 ) ∀τ ∈ [t : T ].

xt ∈ X (xt−1, y
∗
t , q

PV
t,0 )

As long as we can get a solution to the MILPs in a reasonable time, MPC is an easy option to implement.346

However, this method yields no performance guarantee, and does not really take randomness into account,347

as the solution is computed for a single possible realization, but simply recomputes the solution as more348

information becomes available. Consequently, the quality of the solution provided by MPC depends mainly349

on the quality of the forecasted values, the flexibility of the problem and the sensitivity of the problem to350

uncertainty.351

4.3 2-stage stochastic programming352

The strategic design problem (P) balances the design cost
∑

t p
DA
t vDA

t and the operational cost V (x0; v
DA).353

The 2-stage stochastic programming consists in relaxing the non-anticipativity constraint for all operational354

decisions. Hence, the design problem becomes a two-stage stochastic program, where the first stage decision355

is the strategic decision vDA and the recourse are the operational decisions.356

min
vDA∈RT

+

∑
t

pDA
t vDA

t + E [V̂ ant(x0, q
PV
[T ]; v

DA)] (10)

However, computing the exact value of E [V̂ ant(x0, q
PV
[T ]; v

DA)] would require to solve a deterministic opera-357

tional problem for each possible scenario qPV
[T ] ∈ Ω. There is usually far too many scenarios to consider, thus,358

we resort to Sample Average Approximation, which is the 2-stage extension of Monte Carlo methods. We359

draw SMC scenarios, and obtain the following 2-stage formulation:360
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V 2SMC (x0) := min
vDA∈RT

+

min
(xs

t ,y
s
t )

∑
t

pDA
t vDA

t +

SMC∑
s=1

1

SMC

(
T∑

t=1

pIDt vIDt,s

)
(11a)

s.t. xs
t ∈ Xt(x

s
t−1, y

s
t , q

PV
t,s ) ∀t ∈ [T ],∀s ∈ [SMC ],

(11b)

yst ∈ Yt(x
s
t−1, q

PV
t,s , v

DA) ∀t ∈ [T ], ∀s ∈ [SMC ]. (11c)

All the approaches presented in this section up to this point relax non-anticipativity constraints but keep bi-361

nary constraints by solving MILPs. In section 3.2, we saw that SDDP solves problem3 with non-anticipativity362

constraints but relaxing binary constraints. We now look for a trade-off between information relaxation and363

integrity relaxation.364

4.4 Look-ahead heuristic365

Were the forward operator (see eq. (6b)) to have more visibility on the future variable possibilities (or366

impossibilities), we have the intuition that the algorithm would perform better. Indeed, as it is defined, the367

operator takes the best decision possible at t by optimizing a one-stage problem minimizing the current cost368

at t plus an approximate cost-to-go function from t + 1. Details of the problem complexity are thus only369

represented over one stage, and the impact of decision at time t on the next stage should all be taken into370

account by the approximate cost-to-go function.371

To have a better representation of the problem, we can consider τ -stage problems with a final cost-to-go372

function Ṽt+τ instead of one-stage problems (with final cost-to-go function Ṽt+1). More precisely we define a373

τ -look-ahead Bellman operator Bτ
t as:374

B̂τ
t (R) : x, ξ 7→ min

yt,xt

pIDt vIDt + min
(xt′ ,yt′ )t′∈[t+1:t+τ]

E
[ t+τ∑
t′=t+1

pIDt′ v
ID
t′ +R(xt+τ )

]
(12a)

s.t. xt ∈ Xt(x, yt, ξ), (12b)

yt ∈ Yt(x, ξ; v
DA) (12c)

xt′ ∈ Xt′(xt′−1, yt′ , q
PV
t′ ) t′ ∈ [t+ 1 : t+ τ ], (12d)

yt′ ∈ Yt′(xt′−1, q
PV
t′ ; vDA) t′ ∈ [t+ 1 : t+ τ ], (12e)

σ(ut′) ⊂ σ(qPV
[t+1:t′]) t′ ∈ [t+ 1 : t+ τ ]. (12f)

Bτ
t (R) : x 7→ E

[
B̂τ
t (R)(x, qPV

t )

]
(12g)

In this setting, the first-stage decisions are optimized knowing the impact they have on the next τ −1 stages,375

thanks to eqs. (12b) to (12f), and a cost-to-go function R from t+ τ +1. However, the τ−stage decisions are376

taken without any visibility on the future except a given cost-to-go function. For this reason, when solving377

each τ−stage problem Bτ
t (Rt+τ+1)(xt−1), we only store the first-stage variables yt and then move along to378

the next sub-problem Bτ
t+1(Rt+τ+2)(xt).379
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In a sense, we allow the operators to look ahead of time to choose their decision at t, and call this method380

the look-ahead heuristic. We associate to the backward operator B̂τ
t a forward operator F̂τ

t (R) : Xt−1×Ξt →381

Xt × Yt which returns x⋆
t , y

⋆
t depending on current state x and noise realization ξ.382

For clarity, we explicitly give the 2-look-ahead Bellman operator:383

B̂2
t (R)(x, ξ) = min

xt,(xs
t+1)s∈|Ξt+1|

yt,(y
s
t+1

)s∈|Ξt+1|

pIDt vIDt +
∑
s

P(qPV
t+1 = qPV

t+1,s)
[
pIDt+1v

ID
t+1,s +R(xs

t+1)
]

(13a)

s.t. xt ∈ Xt(x, yt, ξ),

yt ∈ Yt(x, ξ; v
DA),

xs
t+1 ∈ Xt+1(xt, y

s
t+1, q

PV
t+1,s) ∀s ∈ |Ξt+1|,

yst+1 ∈ Yt+1(x
s
t , q

PV
t+1,s; v

DA) ∀s ∈ |Ξt+1|,

B2
t (R)(x) = E

[
B̂2
t (R)(x, qPV

t )
]
. (13b)

Note that this 2-look-ahead Bellman operator considers the exact cost at t and t + 1, and uses R as an384

estimation of expected cost-to-go from t + 2 to T . In particular, due to the new information, we must385

consider as many decisions yst+1 as there are realizations for the random variable qPV
t+1.386

Combining these new operators with the approximated cost-to-go functions computed by SDDP (see sec-387

tion 3.2), we get a heuristic where the non-anticipativity constraints hold at any time, and the integrity388

constraints are kept on τ time steps. Unfortunately, increasing the look-ahead horizon i.e., τ , greatly in-389

creases the complexity of the sub-problems we solve. For instance, with |Ωt| = 10, the backward operator B̂τ
t390

at t solves a problem with 10τ−1 times more variables than B̂t.391

5 Numerical results392

We now present a study case from our industrial partner on which we evaluate the numerical methods393

presented above. In section 5.1 we detail the study case, intraday results, given in section 5.2, show that the394

MPC method is most adapted to our study, it is then used for the day-ahead problem in section 5.3 where395

SDDP shows its advantages.396

5.1 Study Case397

The problem described in section 5.1 is motivated by a cement factory in South Korea. We solve the problem398

for hourly planning on one day, with T = 24 time steps. In the Republic of Korea, electricity rates are399

fixed for the industry and depend on different time slots and seasons. We took the rates given by the Korea400

Electricity Power Corporation website [Newa] and thus obtained {pIDt }t∈[T ]. We consider that buying energy401

in advance is cheaper and fix the day-ahead rates to 90% of the real-time rates.402

Then we collect solar irradiance data on [Newb]. From this data, we use a forecast algorithm to predict a403

daily solar energy generation for a park of capacity CPV ∈ {2, 4, 8, 12} in MWc. The model is trained on404

the last 72 hours data to produce generation scenarios over the next 24 hours. From this model we estimate,405

at each time step t, 9 quantiles. We finally assume that the noise is stagewise independent, leading to 9T406

scenarios.407
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The factory owns I = 3 mills and produces J = 3 different types of cement. Production bounds are given by408

the factory. An analysis of the factory’s data leads us to model a mill’s energy consumption, on the range409

[uimin
t , uimax

t ], as an affine function of its cement production (1i).410

We study the impact of three different battery sizes, proportional to the installed renewable capacity: SOCmax411

is equal to the maximum quantity of energy the solar panels can produce in 0.5, 3 or 6 hours. For example,412

on a solar park of 4 MWc, we consider three battery capacities: 2, 12 or 24 MWh. We also fix ϕ+
max and413

ϕ−
max to a quarter of the battery’s capacity per time-step and the efficiency factor ρ to 0.9.414

5.2 Intraday results415

In this section, we present and analyze the results obtained when solving problem (3) on instances in which416

energy can only be bought in real-time, which is equivalent to fixing vDA
t = 0 for all t. Further, we only417

consider a demand at the end of the day: djt > 0 only for t = T .418

Figure 3: Anticipative regret (AR) in percentage for different solar park capacity and ESS capacity: increasing
solar energy (and thus variability) from left to right, and increasing battery storage capacity (proportional
to solar energy available) from top to bottom.
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On a given day, for various renewable size (CPV ∈ {2, 4, 8, 12}) and battery sizing (SOCmax represents419

0.5, 3 or 6 hours of maximum renewable production), we test the different strategies, evaluating them over420

500 common scenarios drawn from our statistical model. More precisely, we compare:421

1. the elementary strategy, described in section 4.1, which solves the EV problem abd then adapt energy422

variables following a deterministic procedure as noises are revealed;423

2. the MPC strategy, see section 4.2, which consists in solving deterministic sub-problems at each stage,424

with updated information, to adjust the solution trajectory accordingly;425

3. and the Look-Ahead (LA), with τ = 2, explained in section 4.4, strategy which computes a solution426

with dynamic programming using an under-approximation of future costs given by SDDP.427

Each strategy yields a noise-based policy which, depending on a scenario, computes a trajectory of the system.428

To evaluate a strategy’s performance over a given scenario, we define the anticipative regret of admissible429

noise-based policy π, on a scenario ξ[T ], as the relative gap between its cost and the anticipative lower bound:430

ARπ(ξ[T ]) =
V̂ π(x0, ξ[T ]; v

DA)− V ant(x0, ξ[T ]; v
DA)

|V ant(x0, ξ[T ]; vDA)|
. (14)

In fig. 3 we report the anticipative regret of each strategy. The results clearly show MPC’s superiority in these431

instances. On the one side, the EV heuristic yields unsatisfactory results in comparison to MPC: its expected432

anticipative regret is always higher, and its expected cost as well. Further, except on the first column, which433

corresponds to instances with few uncertainties (i.e., a solar park of 2MW), and the first instance of the434

second column (a more uncertain instance but with a small battery), the EV heuristic performs worse than435

the look-ahead heuristic. As uncertainties grow (from left to right), the costs of the EV heuristic are farther436

and farther away from the anticipative lower bound, showing that a purely deterministic procedure is not437

relevant to our problem.438

On the other side, the look-ahead heuristic, properly taking uncertainties into account with a stochastic439

procedure, but relaxing some integrity constraints, does not perform as well as MPC. Indeed, the latter,440

adjusting the solution trajectory to uncertainties, yields solutions close to their anticipative lower bound:441

even for the most volatile instances (i.e., the ones with a solar park of 12MWc, all on fig. 3’s fourth column),442

the anticipative regret is lower than 5% and in most cases insignificant. These performances can be explained443

by the problem structure: the uncertainty source does not impact significantly future costs, in the case of444

solar energy variations at t, MPC foresees the cost impact and adapts accordingly. Furthermore, for industrial445

problems with renewable generation, we confirm the necessity of installing an ESS to make the system flexible.446

In fig. 4, we plot the optimal expected cost of the various methods on instances with growing ESS capacity.447

Clearly, the expected optimal expected cost decreases as the ESS capacity increases, although the marginal448

impact of the ESS capacity is decreasing.449

Whereas MPC results are better, we call attention to its limits: on table 1 we can see that MPC takes longer450

in computation time than the look-ahead heuristic, even more so on instances with the most variability. In451

these instances, it remains reasonable (a few seconds per problem at the most for an hour step time problem),452

but with larger instances, and more constraints, it could be unsuitable. Note that SDDP converges after only453

a 100 iterations, taking approximately 250s per instance.454
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Figure 4: Expected value of strategies with 95% confidence interval.

5.3 Day-ahead results455

We now consider the full Problem 4 with strategic and operational decisions. In particular, we consider an456

initial time step (t = 0), where the industrial buys in advance energy quantities for the whole horizon. To457

our knowledge, this type of contract does not exist yet in South Korea, but it could be interesting for the458

regulator to encourage certain consumption schemes. It can also model the access to energy markets for large459

consumers or consumers aggregated through virtual power plants. We fix the in-advance prices at 90% of460

intra-day prices.461

The problem can be decomposed into two parts: first a strategical problem with variable vDA, then an462

operational sub-problem, parametrized by vDA. Our intuition is that a deterministic method might not be463

flexible enough because first-stage decisions impact the whole horizon. Note that the parametrized problem 3464

corresponds to the intraday problem we solve in section 5.2. We saw that the most efficient method to solve465

problem 3 is MPC. In this section, we determine through different methods the best strategical decision vDA
466

and then run MPC on the parametrized operational problem.467

We assume that the demand is only positive at the end of the day djT > 0 and we test various renewable sizes468

(CPV ∈ {2, 4, 8, 12}). In section 5.2, we tested different battery size, and results showed that extending the469

battery capacity, to a certain point, improves costs and the system flexibility. Consequently, we now fix the470

battery capacity to 3 hours of maximum renewable production.471

To optimize vDA, we test 3 methods evaluated over 1000 common scenarios:472

19



SOCmax 0.5h 3h 6h
CPV (MWc) MPC L-A SDDP MPC L-A SDDP MPC L-A SDDP

2 21 6.5 277 12 7.6 268 25 20 262
4 26 8.0 213 4.4 2.9 225 38 18 238
8 254 11 249 136 26 234 193 24 260
12 248 10 266 125 22 250 135 23 261

Table 1: Expected computation time (in seconds) for different solar park capacity and ESS capacity.

1. the Expected Value strategy which solves a deterministic version of Problem 4 replacing random vari-473

ables by their expected value;474

2. the 2−stage strategy, detailed in section 4.3, which takes the decision vDA minimizing the expected cost475

over SMC = 10 scenarios (ξs[T ])s∈[SMC ]. As SMC is small, compared to the noise space, for computational476

reasons, we consider the median scenario with probability 1
2 ;477

3. the SDDP strategy in section 3.2 solves the continuous relaxation of Problem 4, and yields a solution478

taking into consideration the uncertainties on the whole horizon, but relaxing integrity.479

OPT AR (in %)
CPV (MWc) EV 2stage SDDP EV 2stage SDDP

2 6067 6023 6038 1.6 0.9 1.1
4 5471 5483 5451 2.1 2.3 1.7
8 4552 4553 4481 4.2 4.2 2.5
12 3714 3691 3641 8.7 7.9 6.7

Table 2: Expected Cost (Opt) and Anticipative Regret (AR) of the solution obtained when finding vDA with
the different methods (EV, 2−stage, SDDP); parametrizing the operational problem with this vDA; then
solving the parametrized operational problem with MPC.

EV 2stage SDDP
CPV (MWc) I(vDA

EV ) V (x0; v
DA
EV ) Opt I(vDA

2S ) V (x0; v
DA
2S ) Opt I(vDA

r ) V (x0; v
DA
r ) Opt

2 6002 65 6067 5830 193 6023 5659 379 6038
4 5369 102 5471 5123 360 5483 5102 349 5451
8 4357 195 4552 4073 480 4553 4043 438 4481
12 3394 320 3714 2965 726 3691 3094 548 3642

Table 3: We obtain vDA
EV , v

DA
2S , vDA

r by solving the problem respectively with the EV strategy, 2−stage pro-
gramming and SDDP; then we parametrize and solve the operational problem with MPC for each vDA.

From table 2, reporting simulated cost and anticipative regret of the various heuristics, we observe that,480

except for the instance with less uncertainties (first line), the day-ahead energy purchases determined with481

SDDP yield a lower expected cost as well as a lower anticipative regret than those determined with 2−stage482

programming or the EV strategy. As uncertainties grow (from top to bottom on the table), the anticipative483

regret increases and the gap between the AR of EV and the one of SDDP gets wider. Indeed, in the instance484
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with a solar park of 4MWc, the anticipative regret is 0.4% lower for SDDP whereas it is 2% lower for the485

instance with more uncertainties (solar park of 12MWc).486

On table 3 we separate design costs I(vDA) from operational costs V (x0; v
DA) for all instances solved. Whereas487

the EV strategy essentially pays energy in advance, the two-stage and SDDP strategies have lower design488

costs and buy more energy in real-time. This can be explained because a stochastic approach is looking for a489

trade-off between initial and recourse decisions. Assume that we have more energy than predicted, this extra490

energy comes for free and we better not have bought too much energy in advance, forcing us to throw this491

extra energy away (we can’t charge the battery more than what is allowed). On the contrary, if we have less492

energy than predicted, we must either adapt the production plan (which might be possible) or buy energy in493

real-time which is not that much more expensive than if we bought it in advance (110% of day-ahead prices).494

Thus, we understand that in this problem, it is more efficient to underestimate the quantity of energy to buy495

from the main grid, as we have more to gain if the solar realization exceeds its prediction than we have to496

lose in the opposite case.497

We give some additional insights on the various strategies in figs. 5 to 8. In fig. 5, we illustrate the day-498

ahead purchases over time. As expected, the day-ahead purchases are concentrated in the night and early499

morning, when energy from the grid is cheaper and no solar energy is available. Note that contrary to500

other approaches where day-ahead purchases are first-stage decisions, the anticipative day-ahead purchases501

are scenario dependent. Thus, we plot their expectation, which leads to a smoother function. Indeed, the502

minimum production constraint induces a discontinuity in the energy-load, and thus the day-ahead purchases.503

This is also reflected in fig. 6, where we plot the expected number of machines (out of 3). This is caused by504

the day-ahead purchases which shape the production: if energy has been bought for 2 machines, turning a505

third one on would be costly unless the available solar energy can cover it.506

Figure 5: Day-ahead purchases y (in MWh) over time with the different methods (EV, 2−stage, SDDP).
Averaged anticipative’s day ahead purchased are also given.

Moreover, on fig. 7, we plot the expected battery storage (thick lines) over time for each method and the507

standard deviation in dashed lines. Notably, the anticipative solution doesn’t use the battery as much as the508

other methods: indeed, as it is aware of the exact amount of solar energy that will be available, it can adapt509

the production of early stages precisely and does not need the flexibility to compensate for uncertainties.510

We can observe that the EV strategy always makes more use of the battery than the stochastic strategies511

(2−stage and SDDP). This confirms that a deterministic approach needs more flexibility to recover a good512

solution than a stochastic one.513
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Figure 6: Expected number of machines turned on (out of 3) over time with the different methods (EV,
2−stage, SDDP) and with the anticipative solution.

Figure 7: Expected trajectory of the battery (in MWh) over time with the different methods (EV, 2−stage,
SDDP) and with the anticipative solution.

Finally, we can see in fig. 8 the cumulated stocks produced over time for each method. We observe that514

as uncertainties grow (from left to right), the stochastic solution (green line) gets closer to the anticipative515

production (grey line).516

5.4 Results on stagewise dependent scenarios517

In our use case, the only uncertainty lies in the day-ahead forecast error of solar production. This forecast518

error was based on an advanced statistical model that we consider as ground truth. As the aim of this work519

is to compare various methodological approaches we considered a simpler model with stagewise independent520

residual errors (see section 3).521

As this assumption is not strictly satisfied by the advanced statistical model, we simulated the strategies on522

scenarios obtained from the advanced statistical model (see fig. 9). We find that, for these stagewise dependent523

scenarios, MPC is still the best method for the intraday problem, and the SDDP approach gives significantly524

better results than the EV strategy for the day-ahead problem (see fig. 9). We also observe that the expected525

optimal value of the SDDP approach is close to the expected anticipative optimal value. Thus, even if it526

would be possible to use a more advanced statistical model to train the SDDP approach (e.g., autoregressive527
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Figure 8: Evolution of the cumulated product stocks over time with the different methods (EV, 2−stage,
SDDP) and with the anticipative solution.

or Markov Chain models), we do not believe that it would lead to significant improvements in our use case.528

Figure 9: Expected Cost (Opt) of the solutions obtained when solving the operational problem parametrized
by day-ahead purchases vDA of the Anticipative, EV and SDDP strategies, first on a thousand scenarios with
independence assumption; then on a thousand scenarios from the advanced statistical model (A).

6 Conclusion529

In this paper, we considered a common problem in the industry: jointly optimizing the production planning530

and the energy supply of a factory, considering intra-day and day-ahead decisions. For ecological reasons531

we included renewable energies, leading to a stochastic optimization problem. We proposed various solution532

methodologies and compared them on a realistic industrial case study.533
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The main difficulty of the production plan comes from binary variables that cannot be relaxed. They are534

crucial to modeling the hard constraints of the problem. Integrating energy operations into the problem535

obliges us to handle uncertainties. In all the proposed algorithms to solve the problem, a trade-off must be536

found between relaxing integrity and relaxing information. For instance, MPC is fully deterministic whereas537

SDDP solves the continuous relaxation of the stochastic problem. In the tests we have conducted, we found538

that the right balance depends on the problem.539

Indeed, for the intraday problem, where strategic decisions are given, we saw that using the Model Predictive540

Control algorithm, which consists in replacing the stochastic variables with deterministic ones, and reevalu-541

ating decisions at each stage, get the best results. However, for the day-ahead problem, we saw that solving542

the relaxed version of the problem with SDDP yields better strategic decisions as it is more aggressive in543

its day-ahead buying decisions. Indeed, having too much energy is less costly than having too little. Other544

methods were considered but did not yield interesting results in our case. In particular, two-stage approaches545

were not providing better solutions than deterministic MPC; and discretized dynamic programming was too546

slow. Finally, the look-ahead approach computes a feasible and reasonable solution from SDDP cuts. Al-547

though it does not beat MPC in this specific setting, the method shows promise as a viable compromise548

between relaxing integrity and achieving fast computational time.549

To conclude, remember that we did not discuss the investment problem. Indeed, the return on investment550

is difficult to compute, as it highly depends on decarbonization subsidies or tax incentives as well as on551

the evolution of the energy markets. Recent events in Ukraine have shown that energy prices are volatile552

and unpredictable, especially in the long term. However, with conservative estimates, we obtain a return on553

investment of around 10% for solar parks. In our setting, investment in storage is not profitable. Nevertheless,554

if we allow buying and selling energy at the given prices, which is not completely realistic, the battery would555

be quite profitable. Without reselling energy, the profitability of storage also depends on the demand load:556

a high load requiring the machines to be on during peak prices would make the battery profitable. These557

investment aspects would require further investigation.558
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